Explicit Iterations with Monotonicity for Finite Element Approximations Applied to a System of Nonlinear Elliptic Equations

Kazuo Ishihara
Department of Mathematics, Kyushu Institute of Technology,
Tobata, Kitakyushu 804, Japan
Communicated by Lothar Collatz

Received January 5, 1984

1. INTRODUCTION

We consider explicit monotone iterations of the finite element approximations to the Dirichlet problem for the nonlinear elliptic equations:

$$
\begin{align*}
\Delta u & =b_{1} u^{n_{1}} v^{n_{2}}, & \Delta v & =b_{2} u^{n_{1}} v^{n_{2}} & & \text { in } \Omega, \\
u & =g_{1}(x), & v & =g_{2}(x) & & \text { on } \Gamma=\partial \Omega . \tag{1.1}
\end{align*}
$$

Here $x=\left(x_{1}, \ldots, x_{n}\right), \Omega$ is a polyhedral domain in the n-dimensional Euclidean space $\mathbb{R}^{n}, \Gamma=\partial \Omega$ is the boundary of Ω, Δ is the Laplace operator, b_{1}, b_{2} are positive constants, n_{1}, n_{2} are positive integers, and the given functions g_{1}, g_{2} are smooth and nonnegative. Systems of this type arise in chemical reactions [1,4]. In such cases, u, v represent the concentrations, so that u, v are required to be nonnegative. The uniqueness and existence of the nonnegative solution for (1.1) is known [9,10].

In a previous paper [6], we presented implicit iterations for solving a system of nonlinear algebraic equations. From a computational viewpoint, the disadvantage of such implicit iterations is that a set of linear equations has to be solved at each stage. In the case of a very large scale problem, it is not desirable to use implicit iterations.

The aim of this paper is to present explicit iterations which are the generalization of [8]. These iterations provide upper and lower bounds for the solution of the discrete problem. Moreover we give monotone convergence proof. Use of explicit iterations simplifies the program coding procedures and results in significant reduction in computational efforts. Finally some numerical results are given.

For the finite element approximations to a single equation $\Delta u=b u^{2}$, we refer to $[7,8]$.

2. Finite Element Approximation

For given nonnegative functions g_{1}, g_{2}, we assume that

$$
G_{i} \equiv \max \left\{g_{i}(x) ; x \in \Gamma\right\}>0, \quad i=1,2
$$

From the maximum principle [5], the unique nonnegative solution $\{u, v\}$ of (4.1) satisfies

$$
0 \leqslant u \leqslant G_{1}, \quad 0 \leqslant v \leqslant G_{2}
$$

First, we triangulate Ω in such a way that $\bar{\Omega}=T_{1} \cup T_{2} \cup \cdots \cup T_{J}$, where $T_{q}, 1 \leqslant q \leqslant J$, are nondegenerate closed n-simplices whose interiors are pairwise disjoint. By $P_{i}, 1 \leqslant i \leqslant N$ (or $P_{i}, N+1 \leqslant i \leqslant N+M$), we denote the vertices of the triangulation which belong to Ω (or Γ). Set

$$
h_{q}=\text { diameter of } T_{q}, \quad h=\max \left\{h_{q} ; 1 \leqslant q \leqslant J\right\}
$$

$\rho_{q}=$ supremum of the diameter of the inscribed sphere of T_{q}.
We say that a family $\left\{\mathscr{T}^{h}\right\}$ of triangulations is regular if there exists a positive constant c independent of the triangulation such that

$$
h_{q} \leqslant c \rho_{q} \quad \text { for all } \quad T_{q} \in \mathscr{T}^{h}
$$

For $T_{q} \in \mathscr{T}^{h}$, let $P_{0}^{(q)}, P_{1}^{(q)}, \ldots, P_{n}^{(q)}$ be its vertices, and let $\lambda_{j}^{(q)}(x), 0 \leqslant j \leqslant n$, be the barycentric coordinates of a point $x \in T_{q}$ with respect to $P_{j}^{(q)}$. Define

$$
\sigma_{q}=\max \left\{\cos \left(\nabla \lambda_{i}^{(q)}, \nabla \lambda_{j}^{(q)}\right) ; 0 \leqslant i<j \leqslant n\right\}, \sigma=\max \left\{\sigma_{q} ; 1 \leqslant q \leqslant J\right\}
$$

We say that a triangulation \mathscr{T}^{h} is of acute type if $\sigma \leqslant 0$. We note that in case $n=2, \mathscr{T}^{h}$ is of acute type if and only if all the angles of the triangles of \mathscr{F}^{h} are less than or equal to $\pi / 2$ [2].

The barycentric subdivision B_{i}^{q} of T_{q} corresponding to P_{i} which is the vertex of T_{q} with the barycentric coordinate $\lambda_{0}^{(q)}(x)$ is given by

$$
B_{i}^{q}=\bigcap_{j=1}^{n}\left\{x \in T_{q} ; \lambda_{0}^{(q)}(x) \geqslant \lambda_{j}^{(q)}(x)\right\} .
$$

Then the lumped mass region $\mathscr{B}\left(P_{i}\right)$ is defined as follows (see Fig. 1):

$$
\mathscr{B}\left(P_{i}\right)=\bigcup_{q}\left\{B_{i}^{q} ; T_{q} \in \mathscr{T}^{h} \text { such that } P_{i} \text { is a vertex of } T_{q}\right\} .
$$

Fig. 1. Lumped mass region and nodal numbers $i(j)$.

Let $\phi_{i}, \phi_{i}, 1 \leqslant i \leqslant N+M$ be the finite element basis such that
ϕ_{i} is continuous on $\bar{\Omega}$ and linear on each T_{q},

$$
\left.\begin{array}{rlrlrl}
\phi_{i}\left(P_{j}\right) & =1, & i=j, & & \delta_{i}(x) & =1, \\
& =0, & i \neq j, & & =0, & x \notin \mathscr{B}\left(P_{i}\right), \\
& & & \\
&
\end{array}\right)
$$

If we seek the finite element lumped solution $\left\{u_{h}, v_{h}\right\}$ for (1.1) in the form

$$
\begin{gathered}
g_{i}^{(h)}=\sum_{j=N+1}^{N+M} g_{i}\left(P_{j}\right) \phi_{j}, i=1,2, \quad u_{h}=\sum_{j=1}^{N} \xi_{j} \phi_{j}+g_{1}^{(h)}, \\
v_{h}=\sum_{j=1}^{N} \zeta_{j} \phi_{j}+g_{2}^{(h)},
\end{gathered}
$$

then $\left(\xi_{1}, \ldots, \xi_{N}, \zeta_{1}, \ldots, \zeta_{N}\right)$ satisfies the following system of nonlinear algebraic equations:

$$
\begin{align*}
& H_{i}\left(\xi_{1}, \ldots, \xi_{N}, \zeta_{1}, \ldots, \zeta_{N}\right) \\
& \quad \equiv \sum_{j=1}^{N} a_{i, j} \xi_{j}+\sum_{j=N+1}^{N+M} a_{i, j} g_{1, j}+b_{1} m_{i} \xi_{i}^{n_{1} \zeta_{i}^{n_{2}}=0,} \tag{2.1}\\
& Q_{i}\left(\xi_{1}, \ldots, \xi_{N}, \zeta_{1}, \ldots, \zeta_{N}\right) \\
& \quad \equiv \sum_{j=1}^{N} a_{i, j} \zeta_{j}+\sum_{j=N+1}^{N+M} a_{i, j} g_{2, j}+b_{2} m_{i} \xi_{i}^{n_{1} \zeta_{i}^{n_{2}}=0,}
\end{align*}
$$

for $1 \leqslant i \leqslant N$. Here

$$
\begin{align*}
& a_{i, j}=\int_{\Omega} \sum_{p=1}^{n} \frac{\partial \phi_{i}}{\partial x_{p}} \frac{\partial \phi_{j}}{\partial x_{p}} d x, \quad m_{i}=\int_{\Omega} \phi_{i}^{2} d x>0, \\
& \quad 1 \leqslant i \leqslant N, \quad 1 \leqslant j \leqslant N+M, \tag{2.2}\\
& g_{1, j}=g_{1}\left(P_{j}\right) \geqslant 0, \quad g_{2, j}=g_{2}\left(P_{j}\right) \geqslant 0, \quad N+1 \leqslant j \leqslant N+M . \tag{2.3}
\end{align*}
$$

In the sequel, we make the following assumption.
ASSUMPTION 1. The triangulation \mathscr{T}^{h} is regular and of acute type.

3. Explicit Iterations

From the computational viewpoint, we present the following iteration for solving (2.1):

$$
\begin{align*}
w_{i, k+1} & =w_{i, k}-\frac{H_{i}\left(w_{1, k}, \ldots, w_{N, k}, y_{1, k}, \ldots, y_{N, k}\right)}{a_{i, i}+b_{1} m_{i} y_{i, k}^{n_{2}} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]} \tag{3.1}\\
y_{i, k+1} & =y_{i, k}-\frac{Q_{i}\left(w_{1, k}, \ldots, w_{N, k}, y_{1, k}, \ldots, y_{N, k}\right)}{a_{i, i}+b_{2} m_{i} w_{i, k}^{n_{1}} F_{n_{2}-1}\left[y_{i, k}, y_{i, k}\right]}
\end{align*}
$$

for $1 \leqslant i \leqslant N, k=0,1,2, \ldots$ Here

$$
\begin{gather*}
w_{i, 0}=0, \quad y_{i, 0}=G_{2}, \quad 1 \leqslant i \leqslant N, \tag{3.2}\\
F_{s}[\xi, \zeta]=\sum_{j=0}^{s} \xi^{s-j \zeta^{j}}, \\
=1, \\
s \geqslant 1, \tag{3.3}\\
w_{i, k}^{\max }=\max \left\{w_{i(1), k}, w_{i(2), k}, \ldots, w_{i\left(d_{i}\right), k},\right. \\
\left.w_{i\left(d_{i}+1\right), k}, \ldots, w_{i\left(s_{i}\right), k}\right\},
\end{gather*}
$$

$i(1), i(2), \ldots, i\left(d_{i}\right), i\left(d_{i}+1\right), \ldots, i\left(s_{i}\right)$ are nodal numbers of the vertices
 $\overline{P_{i} P_{i(j)}}, 1 \leqslant j \leqslant s_{i}$ are sides of some n-simplices of \mathscr{T}^{h} and

$$
\begin{gathered}
i(1)<i, i(2)<i, \ldots, i\left(d_{i}\right)<i, i\left(d_{i}+1\right)>i, \ldots, i\left(s_{i}\right)>i, \\
a_{i, i(j)}<0, \quad 1 \leqslant j \leqslant s_{i} .
\end{gathered}
$$

We may also present the following:

$$
\begin{align*}
& \bar{w}_{i, k+1}=\bar{w}_{i, k}-\frac{H_{i}\left(\bar{w}_{1, k+1}, \ldots, \bar{w}_{i-1, k+1}, \bar{w}_{i, k}, \ldots, \bar{w}_{N, k}, \bar{y}_{1, k}, \ldots, \bar{y}_{N, k}\right)}{a_{i, i}+b_{1} m_{i} \bar{y}_{i, k}^{{ }_{2}^{2}} F_{n_{1}-1}\left[\bar{w}_{i, k}, \bar{w}_{i, k}^{\max }\right]} \tag{3.4}\\
& \bar{y}_{i, k+1}=\bar{y}_{i, k}-\frac{Q_{i}\left(\bar{w}_{1, k+1}, \ldots, \bar{w}_{N, k+1}, \bar{y}_{1, k+1}, \ldots, \bar{y}_{i-1, k+1}, \bar{y}_{i, k}, \ldots, \bar{y}_{N, k}\right)}{a_{i, i}+b_{2} m_{i} \bar{w}_{i, k+1}^{n_{1}} F_{n_{2}-1}\left[\bar{y}_{i, k}, \bar{y}_{i, k}\right]}
\end{align*}
$$

for $1 \leqslant i \leqslant N, k=0,1,2, \ldots$. Here

$$
\begin{gathered}
\bar{w}_{i, 0}=0, \quad \bar{y}_{i, 0}=G_{2}, \quad 1 \leqslant i \leqslant N \\
\bar{w}_{i, k}^{\max }=\max \left\{\bar{w}_{i(1), k+1}, \bar{w}_{i(2), k+1}, \ldots, \bar{w}_{i\left(d_{i}\right), k+1}, \bar{w}_{i\left(d_{i}+1\right), k}, \ldots, \bar{w}_{i\left(s_{i}\right), k}\right\} .
\end{gathered}
$$

Furthermore we may use the following two iterations:

$$
\begin{align*}
& t_{i, k+1}=t_{i, k}-\frac{H_{i}\left(t_{1, k}, \ldots, t_{N, k}, z_{i, k}, \ldots, z_{N, k}\right)}{a_{i, i}+b_{1} m_{i} z_{i, k}^{2} F_{n_{1}-1}\left[t_{i, k}, G_{1}\right]} \tag{3.5}\\
& z_{i, k+1}=z_{i, k}-\frac{Q_{i}\left(t_{1, k}, \ldots, t_{N, k}, z_{1, k}, \ldots, z_{N, k}\right)}{a_{i, i}+b_{2} m_{i} t_{i, k} F_{n_{2}-1}\left[z_{i, k}, G_{2}\right]} \\
& \bar{i}_{i, k+1}=\bar{t}_{i, k}-\frac{H_{i}\left(\bar{t}_{1, k+1}, \ldots, \bar{t}_{i-1, k+1}, \bar{t}_{i, k}, \ldots, \bar{t}_{N, k}, \bar{z}_{1, k}, \ldots, \bar{z}_{N, k}\right)}{a_{i, i}+b_{1} m_{i} z_{i, k}^{n_{2}} F_{n_{1}-1}\left[\bar{t}_{i, k}, G_{1}\right]} \\
& \bar{z}_{i, k+1}=\bar{z}_{i, k}-\frac{Q_{i}\left(\bar{t}_{1, k+1}, \ldots, \bar{t}_{N, k+1}, \bar{z}_{1, k+1}, \ldots, \bar{z}_{i-1, k+1}, \bar{z}_{i, k}, \ldots, \bar{z}_{N, k}\right)}{a_{i, i}+b_{2} m_{i} \bar{t}_{i, k+1}^{n_{1}} F_{n_{2}-1}\left[\bar{z}_{i, k}, G_{2}\right]} \tag{3.6}
\end{align*}
$$

for $1 \leqslant i \leqslant N, k=0,1,2, \ldots$. Here

$$
t_{i, 0}=\bar{t}_{i, 0}=0, \quad z_{i, 0}=\bar{z}_{i, 0}=G_{2}, \quad 1 \leqslant i \leqslant N .
$$

4. Monotone Convergence Results

We give the monotone convergence proof. Some lemmas are prepared.
Lemma 1. It holds that

$$
\begin{aligned}
\left(\xi F_{s}[\xi, \zeta]-\xi^{s+1}\right) & =\left(\zeta F_{s}[\xi, \zeta]-\zeta^{s+1}\right) \\
\xi^{n_{1}} \zeta^{n_{2}}-\bar{\xi}^{n_{1}} \zeta^{n_{2}} & =\zeta^{n_{2}} F_{n_{1}-1}[\xi, \bar{\xi}](\xi-\bar{\xi})+\bar{\xi}^{n_{1}} F_{n_{2}-1}[\zeta, \zeta](\zeta-\bar{\zeta})
\end{aligned}
$$

Proof. In case $s=0$, the proof is immediate. When $s \geqslant 1$, we have

$$
\begin{aligned}
\left(\xi F_{s}[\xi, \zeta]-\xi^{s+1}\right) & =\xi^{s} \zeta+\xi^{s-1} \zeta^{2}+\cdots+\xi^{2} \zeta^{s-1}+\xi \zeta^{s}=\left(\zeta F_{s}[\xi, \zeta]-\zeta^{s+1}\right) \\
\xi^{n_{1}} \zeta^{n_{2}}-\bar{\xi}^{n_{1}} \bar{\zeta}^{n_{2}} & =\zeta^{n_{2}}\left(\xi^{n_{1}}-\bar{\xi}^{n_{1}}\right)+\bar{\xi}^{n_{1}}\left(\zeta^{n_{2}}-\bar{\zeta}^{n_{2}}\right) \\
& =\zeta^{n_{2}} F_{n_{1}-1}[\xi, \bar{\xi}](\xi-\bar{\xi})+\bar{\xi}^{n_{1}} F_{n_{2}-1}[\zeta, \bar{\zeta}](\zeta-\bar{\zeta})
\end{aligned}
$$

Lemma 2 [2,6]. Under Assumption $1, a_{i, j}, 1 \leqslant i \leqslant N, 1 \leqslant j \leqslant N+M$, of (2.2) satisfy

$$
a_{i, i}>0, a_{i, j} \leqslant 0, a_{i, p}=0,
$$

$i \neq j, p \neq i, p \neq i(r), 1 \leqslant r \leqslant s_{i}, 1 \leqslant i \leqslant N, 1 \leqslant j \leqslant N+M$,

$$
\sum_{j=1}^{N+M} a_{i, j}=\sum_{j=1}^{s_{i}} a_{i, i(j)}+a_{i, i}=0, \quad 1 \leqslant i \leqslant N
$$

Lemma 3 [6]. Under Assumption 1, there exists a unique nonnegative solution ($\xi_{1}, \ldots, \xi_{N}, \zeta_{1}, \ldots, \zeta_{N}$) of (2.1) satisfying $0 \leqslant \xi_{i} \leqslant G_{1}, 0 \leqslant \zeta_{i} \leqslant G_{2}$, $1 \leqslant i \leqslant N$.

Lemma 4. Under Assumption 1, the iteration (3.1) satisfies

$$
w_{i, k} \geqslant 0, y_{i, k} \geqslant 0, w_{i, k+1} \leqslant w_{i, k}^{\max }, \quad 1 \leqslant i \leqslant N, k=0,1,2, \ldots
$$

Proof. By (3.2) we get $w_{i, 0} \geqslant 0, y_{i, 0} \geqslant 0,1 \leqslant i \leqslant N$. Assume that

$$
\begin{equation*}
w_{i, k} \geqslant 0, \quad y_{i, k} \geqslant 0, \quad 1 \leqslant i \leqslant N . \tag{4.1}
\end{equation*}
$$

Then, by (3.1), (3.3), (4.1), (2.2), (2.3), and Lemma 2, we obtain

$$
\begin{aligned}
& \left(a_{i, i}+b_{1} m_{i} y_{i, k}^{n} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]\right) w_{i, k+1} \\
& =-\sum_{\substack{j=1 \\
j \neq i}}^{N} a_{i, j} w_{j, k}-\sum_{j=N+1}^{N+M} a_{i, j} g_{1, j}+b_{1} m_{i} y_{i, k}^{n 2}\left(w_{i, k} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]-w_{i, k}^{n}\right) \geqslant 0, \\
& \quad\left(a_{i, i}+b_{2} m_{i} w_{i, k}^{n_{1}} F_{n_{2}-1}\left[y_{i, k}, y_{i, k}\right]\right) y_{i, k+1} \geqslant 0, \quad 1 \leqslant i \leqslant N .
\end{aligned}
$$

Thus, by induction we obtain (4.1), $k=0,1,2, \ldots$. On the other hand, from Lemmas 1 and 2, it follows that

$$
w_{i, k+1}=\frac{-\sum_{j=1}^{s_{i}} a_{i, i(j)} w_{i(j), k}+b_{1} m_{i} y_{i, k}^{n_{2}}\left(w_{i, k} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]-w_{i, k}^{n_{1}}\right)}{a_{i, i}+b_{1} m_{i} y_{i, k}^{n} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]} \leqslant w_{i, k}^{\max },
$$

for $1 \leqslant i \leqslant N, k=0,1,2, \ldots$. Hence the proof is complete.
We are now in a position to prove the following theorem.
Theorem 1. Under Assumption 1, the iteration (3.1) satisfies

$$
\begin{gathered}
0 \leqslant w_{i, k} \leqslant G_{1}, \quad 0 \leqslant y_{i, k} \leqslant G_{2}, \quad 1 \leqslant i \leqslant N, k=0,1,2, \ldots, \\
w_{i .0} \leqslant w_{i, 1} \leqslant \cdots \leqslant w_{i, k} \leqslant w_{i, k+1} \leqslant \cdots, \\
y_{i, 0} \geqslant y_{i, 1} \geqslant \cdots \geqslant y_{i, k} \geqslant y_{i, k+1} \geqslant \cdots, \quad 1 \leqslant i \leqslant N, \\
\lim _{k \rightarrow \infty} w_{i, k}=\xi_{i}, \quad \lim _{k \rightarrow \infty} y_{i, k}=\zeta_{i}, \quad 1 \leqslant i \leqslant N .
\end{gathered}
$$

Proof. From Lemma 4, it follows that

$$
\begin{equation*}
w_{i, k} \geqslant 0, \quad y_{i, k} \geqslant 0, \quad 1 \leqslant i \leqslant N, k=0,1,2, \ldots \tag{4.2}
\end{equation*}
$$

From (3.2) it is clear that $w_{i, 0} \leqslant G_{1}, 1 \leqslant i \leqslant N$. Assume that

$$
\begin{equation*}
w_{i, k} \leqslant G_{1}, \quad 1 \leqslant i \leqslant N . \tag{4.3}
\end{equation*}
$$

Combining (4.3) and Lemma 4, we have

$$
w_{i, k+1} \leqslant \max \left\{w_{i(1), k}, w_{i(2), k}, \ldots, w_{i\left(s_{i}\right), k}\right\} \leqslant G_{1}, \quad 1 \leqslant i \leqslant N .
$$

Hence by induction (4.3) holds for $k=0,1,2, \ldots$. By (4.2), (3.1) with $k=0$, (3.2), and Lemma 2, we have

$$
w_{i, 1} \geqslant 0=w_{i, 0}, \quad y_{i, 1} \leqslant G_{2}=y_{i, 0}, \quad 1 \leqslant i \leqslant N .
$$

Assume that

$$
\begin{equation*}
w_{i, 0} \leqslant w_{i, 1} \leqslant \cdots \leqslant w_{i, k}, \quad y_{i, 0} \geqslant y_{i, 1} \geqslant \cdots \geqslant y_{i, k}, \quad 1 \leqslant i \leqslant N . \tag{4.4}
\end{equation*}
$$

From (3.1) with k and $k+1$, (4.4), Lemmas 1, 2, and 4, we get

$$
\begin{aligned}
& \quad\left(a_{i, i}+b_{1} m_{i} y_{i, k}^{n_{2}} F_{n_{1}-1}\left[w_{i, k}, w_{i, k}^{\max }\right]\right)\left(w_{i, k+1}-w_{i, k}\right) \\
& = \\
& \quad-\sum_{\substack{j=1 \\
j \neq i}}^{N} a_{i, j}\left(w_{j, k}-w_{j, k-1}\right) \\
& \\
& \quad+b_{1} m_{i} w_{i, k}^{n} F_{n_{2}-1}\left[y_{i, k-1}, y_{i, k}\right]\left(y_{i, k-1}-y_{i, k}\right) \\
& \quad \\
& \quad+b_{1} m_{i} y_{i, k-1}^{2}\left(w_{i, k}-w_{i, k-1}\right)\left(F_{n_{1}-1}\left[w_{i, k-1}, w_{i, k-1}^{\max }\right]\right.
\end{aligned} \quad \begin{aligned}
& \left.\quad-F_{n_{1}-1}\left[w_{i, k-1}, w_{i, k}\right]\right) \geqslant 0, \\
& \left(a_{i, i}+b_{2} m_{i} w_{i, k}^{n} F_{n_{2}-1}\left[y_{i, k}, y_{i, k}\right]\right)\left(y_{i, k+1}-y_{i, k}\right) \leqslant 0, \quad 1 \leqslant i \leqslant N .
\end{aligned}
$$

Thus (4.4) holds for $k=0,1,2, \ldots$, and the limits $\xi_{i}=\lim _{k \rightarrow \infty} w_{i, k}$, $\overline{\zeta_{i}}=\lim _{k \rightarrow \infty} y_{i, k}, 1 \leqslant i \leqslant N$, exist and satisfy

$$
H_{i}\left(\bar{\xi}_{1}, \ldots, \bar{\xi}_{N}, \bar{\zeta}_{1}, \ldots, \bar{\zeta}_{N}\right)=0, \quad Q_{i}\left(\bar{\xi}_{1}, \ldots, \bar{\xi}_{N}, \bar{\zeta}_{1}, \ldots, \bar{\zeta}_{N}\right)=0, \quad 1 \leqslant i \leqslant N,
$$

from (3.1). Hence an application of Lemma 3 leads to $\bar{\zeta}_{i}=\xi_{i}, \zeta_{i}=\zeta_{i}$, $1 \leqslant i \leqslant N$. Therefore this completes the proof of Theorem 1 .
By the same arguments, we obtain the following results.
Theorem 2. Under Assumption 1, (3.4), (3.5), (3.6) converge monotonically, i.e.,

$$
\begin{gathered}
\bar{w}_{i, k} \nearrow \xi_{i}, \bar{y}_{i, k} \searrow \zeta_{i} ; t_{i, k} \nearrow \xi_{i}, z_{i, k} \searrow \zeta_{i} \\
\bar{t}_{i, k} \nearrow \xi_{i}, \bar{z}_{i, k} \searrow \zeta_{i} ; \quad 1 \leqslant i \leqslant N .
\end{gathered}
$$

Remark 1. We can construct the following iteration:

$$
\begin{align*}
& \tilde{y}_{i, k+1}=\tilde{y}_{i, k}-\frac{Q_{i}\left(\tilde{w}_{1, k}, \ldots, \tilde{w}_{N, k}, \tilde{y}_{1, k+1}, \ldots, \tilde{y}_{i-1, k+1}, \tilde{y}_{i, k}, \ldots, \tilde{y}_{N, k}\right)}{a_{i, i}+b_{2} m_{i} \tilde{w}_{i, k}^{n_{1}} F_{n 2-1}\left[\tilde{y}_{i, k}, \tilde{y}_{i, k}^{\max }\right]} \tag{4.5}\\
& \tilde{w}_{i, k+1}=\tilde{w}_{i, k}-\frac{H_{i}\left(\tilde{w}_{1, k+1}, \ldots, \tilde{w}_{i-1, k+1}, \tilde{w}_{i, k}, \ldots, \tilde{w}_{N, k}, \tilde{y}_{1, k+1}, \ldots, \tilde{y}_{N, k+1}\right)}{a_{i, i}+b_{1} m_{i} \tilde{y}_{i, k+1}^{n_{2}} F_{n_{1}-1}\left[\tilde{w}_{i, k}, \tilde{w}_{i, k}\right]}
\end{align*}
$$

for $1 \leqslant i \leqslant N, k=0,1,2, \ldots$ Here $\tilde{y}_{i, 0}=0, \tilde{w}_{i, 0}=G_{1}, 1 \leqslant i \leqslant N$,

$$
\tilde{y}_{i, k}^{\max }=\max \left\{\tilde{y}_{i(1), k+1}, \tilde{y}_{i(2), k+1}, \ldots, \tilde{y}_{i\left(d_{i}\right), k+1}, \tilde{y}_{i\left(d_{i}+1\right), k}, \ldots, \tilde{y}_{i\left(s_{i}\right), k}\right\} .
$$

Then (4.5) converges monotonically, i.e.,

$$
\tilde{y}_{i, k} \nearrow \zeta_{i}, \quad \tilde{w}_{i, k} \searrow \xi_{i}, \quad 1 \leqslant i \leqslant N
$$

Hence the above result and Theorem 2 lead to

$$
\bar{w}_{i, k} \leqslant \xi_{i} \leqslant \tilde{w}_{i, k}, \quad \tilde{y}_{i, k} \leqslant \zeta_{i} \leqslant \bar{y}_{i, k}, \quad 1 \leqslant i \leqslant N, k=0,1,2, \ldots
$$

This provides the upper and lower bounds for the solution of (2.1).

5. Numerical Examples

We show here numerical results of the explicit iterations. Let

$$
\begin{gathered}
\Omega_{H}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; \sqrt{3} / 4<\sqrt{3} x_{1}+x_{2}<5 \sqrt{3} / 4\right. \\
\left.0<x_{2}<\sqrt{3} / 2,-3 \sqrt{3} / 4<x_{2}-\sqrt{3} x_{1}<\sqrt{3} / 4\right\} \\
\Omega_{S}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; 0<x_{1}<1,0<x_{2}<1\right\}
\end{gathered}
$$

Problem 1.

$$
\begin{aligned}
\Delta u & =2 u^{2} v, & \Delta v & =u^{2} v & & \text { in } \Omega_{S} \\
u & =2 /\left(x_{1}+x_{2}+0.1\right), & v & =1 /\left(x_{1}+x_{2}+0.1\right) & & \text { on } \Gamma_{S}=\partial \Omega_{S}
\end{aligned}
$$

Problem 2.

$$
\begin{array}{rlrlrl}
\Delta u & =3 u v, & & \text { in } \Omega_{H}, \\
u & =1 /\left(x_{1}+x_{2}+1\right)^{2}, & v & =4 /\left(x_{1}+x_{2}+1\right)^{2} & & \text { on } \Gamma_{H}=\partial \Omega_{H} .
\end{array}
$$

Problem 3.

$$
\begin{aligned}
\Delta u & =3 u v, & \Delta v & =12 u v & & \text { in } \Omega_{S}, \\
u & =1 /\left(x_{1}+x_{2}+1\right)^{2}, & v & =4 /\left(x_{1}+x_{2}+1\right)^{2} & & \text { on } \Gamma_{S}=\partial \Omega_{S} .
\end{aligned}
$$

The exact solutions for Problems 1,2,3 are the boundary functions extended to the domain, respectively.

We divide Ω_{H} into uniform mesh with equilateral triangles (7,19, 61 nodes). We also divide Ω_{s} into uniform mesh with right isosceles triangles $(9,25,81$ nodes $)$. See Fig. 2. These triangulations satisfy

Fig. 2. Uniform mesh (acute type): (a) hexagon (19 nodes); (b) square (25 nodes).

TABLE I
Number of Iterations

	Problem	Iteration	Number of iterations
		(3.4)	27
Problem 1	(25 nodes)	(3.6)	44
		(3.1)	50
Problem 2	(19 nodes)	(3.5)	61
Problem 3	(25 nodes)	(3.4)	17

TABLE II
Numerical Results for Problem 1 with 25 Nodes at the Point $\left(\frac{1}{2}, \frac{1}{2}\right)$

k	Iteration (3.4)		Iteration (4.5)	
	$\bar{w}_{i, k}$	$\bar{y}_{i, k}$	$\tilde{w}_{i, k}$	$\tilde{y}_{i, k}$
0	0.00000	10.000	20.000	0.00000
1	0.17408	8.3123	16.540	0.0028822
2	0.50598	5.2665	10.406	0.013327
3	0.84236	3.1262	6.1980	0.057920
4	1.1496	2.0374	4.0223	0.19730
5	1.3881	1.4889	2.9191	0.39946
6	1.5594	1.2131	2.3733	0.58428
10	1.8146	0.94559	1.8810	0.88626
20	1.8467	0.92348	1.8469	0.92332
26	1.8468	0.92340	1.8468	0.92340
27	1.8468	0.92340	1.8468	0.92340
(Convergence)			(Convergence)	

Assumption 1. The numerical convergence criterion for the iteration is employed, for example, as follows:

$$
\max _{1 \leqslant i \leqslant N}\left|w_{i, k}-w_{i, k-1}\right| \leqslant 10^{-6} \quad \text { and } \quad \max _{1 \leqslant i \leqslant N}\left|y_{i, k}-y_{i, k-1}\right| \leqslant 10^{-6}
$$

In Table I we show the numbers of iterations to achieve our criterion. In Table II and Fig. 3, we present the monotone convergence results. In [6] we showed that $\left\{u_{h}, v_{h}\right\}$ converges uniformly to $\{u, v\}$ as $h \rightarrow 0$. Table III

Fig. 3. Monotone convergence for Problem 1 with 25 nodes at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.

TABLE III
Finite Element Solutions
(a) Problem 1

h	Number of nodes	$\xi_{i}=u_{h}\left(\frac{1}{2}, \frac{1}{2}\right)$	$\zeta_{i}=v_{h}\left(\frac{1}{2}, \frac{1}{2}\right)$
$\sqrt{2} / 2$	9	1.8778	0.93891
$\sqrt{2} / 4$	25	1.8468	0.92340
$\sqrt{2} / 8$	81	1.8282	0.91411
Exact (continuous)	1.8182	0.90909	

(b) Problem 2

		$\xi_{i}=u_{h}\left(\frac{1}{2}, \sqrt{3} / 4\right)$	$\zeta_{i}=v_{h}\left(\frac{1}{2}, \sqrt{3} / 4\right)$
$\frac{1}{2}$	7	0.27519	1.1007
$\frac{1}{4}$	19	0.26948	1.0779
$\frac{1}{8}$	61	0.26810	1.0724
Exact (continuous)		0.26763	1.0705

(c) Problem 3

		$\xi_{i}=u_{h}\left(\frac{1}{2}, \frac{1}{2}\right)$	$\zeta_{i}=v_{h}\left(\frac{1}{2}, \frac{1}{2}\right)$
$\sqrt{2} / 2$	9	0.25388	1.0155
$\sqrt{2} / 4$	25	0.25136	1.0054
$\sqrt{2} / 8$	81	0.25038	1.0015
Exact (continuous)		0.25000	1.0000

gives the finite element solutions. These results for Problems 2,3 coincide with those obtained in [6]. Our numerical examples verify the effectiveness of the iterations.

All computations were performed on the Melcom-Cosmo 800 III computer at Kyushu Institute of Technology.

Acknowledgments

The author would like to thank Professor L. Collatz for his valuable comments.

References

1. C. M. Ablow and C. L. Perry, Iterative solutions of the Dirichlet problem for $\Delta u=u^{2}$, SIAM J. Appl. Math. 7 (1959), 459-467.
2. P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17-31.
3. L. Collatz, "Functional Analysis and Numerical Mathematics," Academic Press, New York, 1966.
4. P. V. Dankwerts, "Gas Liquid Reactions," McGraw-Hill, New York, 1970.
5. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1977.
6. K. Ishihara, On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105-136.
7. K. Ishihara, Finite element approximations applied to the nonlinear boundary value problem $\Delta u=b u^{2}$, Publ. Res. Inst. Math. Sci. 18 (1982), 17-34.
8. K. Ishihara, Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem, Numer. Math. 43 (1984), 419-437.
9. C. S. Kahane, On a system of nonlinear parabolic equations arising in chemical engineering, J. Math. Anal. Appl. 53 (1976), 343-358.
10. G. T. McAllister, Difference methods for a nonlinear elliptic system of partial differential equations, Quart. Appl. Math. 23 (1966), 355-360.
11. J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970.
12. R. S. Varga, "Matrix Iterative Analysis," Prentice-Hall, Englewood Cliffs, N. J., 1962.
