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1. INTRODUCTION

We consider explicit monotone iterations of the finite element
approximations to the Dirichlet problem for the nonlinear elliptic
equations:

ina,

onr=oa.
(1.1)

Here X= (XI"'" X n ), a is a polyhedral domain in the n-dimensional
Euclidean space IR n

, r = oa is the boundary of a, A is the Laplace
operator, bI' b2 are positive constants, n 1> n2 are positive integers, and the
given functions g I, g2 are smooth and nonnegative. Systems of this type
arise in chemical reactions [1, 4]. In such cases, u, v represent the concen­
trations, so that u, v are required to be nonnegative. The uniqueness and
existence of the nonnegative solution for (1.1) is known [9,10].

In a previous paper [6], we presented implicit iterations for solving a
system of nonlinear algebraic equations. From a computational viewpoint,
the disadvantage of such implicit iterations is that a set of linear equations
has to be solved at each stage. In the case of a very large scale problem, it
is not desirable to use implicit iterations.

The aim of this paper is to present explicit iterations which are the
generalization of [8]. These iterations provide upper and lower bounds for
the solution of the discrete problem. Moreover we give monotone con­
vergence proof. Use of explicit iterations simplifies the program coding
procedures and results in significant reduction in computational efforts.
Finally some numerical results are given.
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For the finite element approximations to a single equation Au = bu2
, we

refer to [7,8].

2. FINITE ELEMENT ApPROXIMAnON

For given nonnegative functions gl' g2' we assume that

i = 1, 2.

From the maximum principle [5], the unique nonnegative solution {u, v}
of (i.1) satisfies

First, we triangulate Q in such a way that Q = T[ U T 2 U ... U Tb where
Tq , 1~ q ~ J, are nondegenerate closed n-simplices whose interiors are
pairwise disjoint. By Pi' 1~ i ~ N (or Pi' N + 1~ i ~ N + M), we denote
the vertices of the triangulation which belong to Q (or n. Set

hq= diameter of Tq, h=max{hq; 1~q~J},

Pq =supremum of the diameter of the inscribed sphere of Tq •

We say that a family {.r h
} of triangulations is regular if there exists a

positive constant c independent of the triangulation such that

For TqE.rh, let P&q), P~q), ..., P~q) be its vertices, and let A)q)(X), 0 ~ j ~ n,
be the barycentric coordinates of a point x E Tq with respect to p)q). Define

(Jq = max{cos(VAlq), VA)q)); O~ i <j~ n}, (J = max{(Jq; 1~ q ~J}.

We say that a triangulation .rh is of acute type if (J ~ O. We note that in
case n = 2, .rh is of acute type if and only if all the angles of the triangles of
.rh are less than or equal to n/2 [2].

The barycentric subdivision B'f of Tq corresponding to Pi which is the
vertex of Tq with the barycentric coordinate A&q)(X) is given by

n

B'f = n {XE Tq; A&q)(X);::: A)q)(X)}.
}=1

Then the lumped mass region 9I(P;) is defined as follows (see Fig. 1):

~(Pi) =U {B'f; TqE.rh such that Pi is a vertex of Tq}.
q
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FIG. 1. Lumped mass region and nodal numbers jU).

Let ¢Ji' ;Pi' 1~ i ~ N + M be the finite element basis such that

¢Ji is continuous on Q and linear on each Tq ,

243

¢Ji(Pj ) = 1, i = j,

=0, i# j,

;P;(x) = 1, xE&I(P;),

= 0, x¢. &I(P;),
1~i,j~N+M.

If we seek the finite element lumped solution {uh, Vh} for (1.1) in the form

N+M

glh) = L g;(Pj)¢Jj , i = 1, 2,
j~N+ 1

N

uh= L ~j¢Jj + g~h),
j~l

N

Vh = L (j¢Jj + g~h),
j=l

then (~I ,..., ~N' (1)'''' (N) satisfies the following system of nonlinear
algebraic equations:

640/44/3-4

N N+M

== L ai,j~j + L ai,j g I,j + b l mi~71(72 = 0,
j=1 j~N+1

N N+M

==" a·· r .+ " a··g2 +b2m.;:n1r'!2=0L. 1.1'-,,] L... '.J.J IS, '=', ,
j~1 j~N+1

(2.1 )
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mi =t rP;dx>O,

1~i~N, 1~j~N+M, (2.2)

g2,J=g2(PJ)~0, N+1~j~N+M. (2.3)

In the sequel, we make the following assumption.

ASSUMPTION 1. The triangulation f/h is regular and of acute type.

3. EXPLICIT ITERATIONS

From the computational viewpoint, we present the following iteration
for solving (2.1):

Yi,k + 1 = Yi,k
Qi(WI,b'''' WN,b YI,k"'" YN,d

ai,i + b2miw7,1Fn2-I[Yi,b Yi,kJ'

(3.1 )

for 1~ i~ N, k = 0, 1,2,.... Here

Wi,O=o, 1~i~N, (3,2)

5

F,[~,']= L c-J,J, s~1,
J=O

= 1, s=O,

i(1),i(2), ... ,i(dJ, i(di+1), .."i(s;) are nodal numbers of the vertices
Pi(l)' Pi(2)"'" Pi(d,j, Pi(d,+ I), .. ·, Pi(s,j associated with Pi (see Fig. 1) such that
PiPi(J)' 1~j~Si are sides of some n-simplices of f/h and

i(1) < i, i(2) < i,.,., i(dJ < i, i(di+ 1) > i, ... , i(sJ > i,

ai,i(J) < 0,

We may also present the following:
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for 1~i~N, k=O, 1,2,.... Here

245

Wi.O=o, 1~ i~ N,

- -
Zi,k+ 1= Zi,k

Furthermore we may use the following two iterations:

Hi(tl,b'''' tN,b Zi.b···, zN.d
t i,k + I = t i,k - b nz F [ G ]'ai,i+ Imizi,k n[-I ti,b I

Qi(t I,b'''' tN,b Z1,k , ... , ZN,d
Zi,k + I = Zi,k - b n[ F [ G ]'

ai,i+ 2m Ji,k nz-I Zi,b 2

- - Hi(il,k+I"",(-I,k+l,ii,b ...,iN,bZI,b,,,,ZN.d
t i,k + I = ti,k - b -nz F [ - G] ,

ai,i+ Imizi,k nl-I ti,b I

Qi(il,k + !l'''' iN,k + I' Z1,k + I,·.., Zi - I,k + I, Zi,b'''' ZN,d

ai,i+ b2 m J7.k+I Fnz-I[Zi,k, G2 ]

for 1~i~N, k=O, 1,2,.... Here

(3.5)

(3.6)

t i.O = ii,O = 0, 1~i~N.

4. MONOTONE CONVERGENCE RESULTS

We give the monotone convergence proof. Some lemmas are prepared.

LEMMA 1. It holds that

(~Fs [~, n - ~s+ I) = ((Fs[~, n _(s+ I),

~nl(nz _ (n 1(nz= (nzFnl_I[~' n(~ - () + (n1Fnz _ I[(, (](( - 0.

Proof In case s = 0, the proof is immediate. When s ~ 1, we have

(~Fs [~, (] - ~s+ I) = ~S( + ~s-I(2 + ... + ~2(s-1 + ~(S = ((Fs [~, (] _ (s+ I),

~nl(nz _ (n1(nz = (nz( ~nl _ (n1) + (n1((nz _ (nz)

=(nZFn[-I [~, (](~ - () + (nlFnz~ 1[(, (](( - n.
LEMMA 2 [2,6]. Under Assumption 1, ai,), 1~ i~ N, 1~j~ N + M, of

(2.2) satisfy
ai,i > 0, ai,} ~ 0, ai,p = 0,

i#j, p#i, p#i(r), 1~r~si' 1~i~N, 1~j~N+M,
N+M Sj

" a" = " a, '( ') + a .. = °L. I,J ~ 1,1 J 1,1 ,

}=I }=I

l~i~N.
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LEMMA 3 [6]. Under Assumption 1, there exists a unique nonnegative
solution (~!""'~N' (!>·'·,(N) of (2.1) satisfying O~~i~G!, 0~(i~G2'

1~i~N.

LEMMA 4. Under Assumption 1, the iteration (3.1) satisfies

Wi,k;::: 0, Yi,k;::: 0, Wi,k+! ~ wrtx
, 1~ i~N, k=O, 1,2,....

Proof By (3.2) we get wi,o;::: 0, Yi,O;::: 0, 1~ i ~ N. Assume that

Wi,k;:::O, Yi,k;:::O, 1~i~N. (4.1 )

Then, by (3.1), (3.3), (4.1), (2.2), (2.3), and Lemma 2, we obtain

N N+M
= - L aiJwj,k- L aiJg!J+b!miYZk(wi,kFnl~![Wi.k>WrtX]-wZU;:::O,

j=! j=N+!
j#i

1~i~N.

Thus, by induction we obtain (4.1), k =0, 1,2" ... On the other hand, from
Lemmas 1 and 2, it follows that

for 1~ i~ N, k = 0, 1,2,.... Hence the proof is complete.
We are now in a position to prove the following theorem.

THEOREM 1. Under Assumption 1, the iteration (3.1) satisfies

1 ~ i ~ N, k = 0, 1, 2, ...,

Wi,O~Wi,!~ .. , ~Wi,k~Wi,k+!~ "',

1~ i~ N,

lim Wi,k = ~i'
k~ 00

lim Yi,k=C
k~a:J

1~i~N.

Proof From Lemma 4, it follows that

Wi,k;:::O, Yi,k;:::O, 1~ i ~ N, k =0,1,2,.... (4.2)

From (3.2) it is clear that W i,O ~ G!, 1~ i ~ N. Assume that

(4.3 )
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Combining (4.3) and Lemma 4, we have

1~i~N.
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Hence by induction (4.3) holds for k=O, 1,2,.... By (4.2), (3.1) with k=O,
(3.2), and Lemma 2, we have

Wi,1 ~°= wi,o, Yo ~ G2 = Yi,O, 1~ i ~ N.

Assume that

Wi,O ~ Wi,1 ~ .. , ~ wi,k> 1~ i~ N. (4.4 )

From (3.1) with k and k + 1, (4.4), Lemmas 1, 2, and 4, we get

(ai,i+ blmi Y7,iJnl-I[Wi,k' wr:X])(Wi,k+ I - wi,d
N

= - L aiiwj,k-Wj,k-d
j=1
j#i

+ blmiw7,lJn2-1 [Yi,k-I, Yi,k](Yi,k-1 - Yi,k)

+bl miY7,i-I(W i,k - Wi,k-I)(Fn1 - 1[Wi,k-I' w::':~ I]

-Fn1-I[Wi,k-l, Wi,k])~O,

(ai,i + b2 miw7,lJn2- 1[Yi,k' Yi,k])(Yi,k+ 1- Yi,d ~ 0, 1~ i ~ N.

Thus (4.4) holds for k=O, 1,2,..., and the limits (i=limk_ oo wi,k>
(;=limk_oo Yi,k' 1~i~N, exist and satisfy

H;((I"'" (N' (I"'" (N) = 0, Qi((\>'''' (N' (\>..., (N) = 0, 1~ i~ N,

from (3.1). Hence an application of Lemma 3 leads to (i = ~i' (; = C,
1~ i ~ N. Therefore this completes the proof of Theorem 1.

By the same arguments, we obtain the following results.

THEOREM 2. Under Assumption 1, (3.4), (3.5), (3.6) converge mono­
tonically, Le.,

Remark 1. We can construct the following iteration:
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for 1~ i~ N, k =0,1,2,.... Here Yi.O = 0, "'i,O= GI , 1~ i~ N,

y::,tx = max {Yi(I),k+ I' Yi(2),k + I ,..., Yi(di).k+ I' Yi(di+ I),k,"" Yi(Sil,k}'

Then (4.5) converges monotonically, i,e.,

I~i~N.

Hence the above result and Theorem 2 lead to

1~ i~ N, k = 0, 1,2,....

This provides the upper and lower bounds for the solution of (2.1).

5. NUMERICAL EXAMPLES

We show here numerical results of the explicit iterations. Let

DH= {(XI> X2) E 1R2
; J3/4 < J3X I +X2 < 5 J3/4,

0<x2<J3/2, -3 J3/4<x2-J3xI<J3/4},

Q s = {(XI' x 2 ) E 1H 2
; 0 < XI < 1, 0 < X 2 < 1}.

PROBLEM 1.

Au = 2u2v, Av = u2v inDs,

u=2/(x I +X2+ 0.1), v = I/(xI +X2 +0.1) on Fs=oQ s.

PROBLEM 2.

Au = 3uv, Av = I2uv inQH,

u= I/(xI +X2 + If, v=4/(xI +X2+ If onFH=oQH'

PROBLEM 3.

Au = 3uv, Av = I2uv in Qs,

u = I/(x I + X2 + 1)2, v=4/(XI +X2+ 1)2 on Fs = oQs'

The exact solutions for Problems 1,2,3 are the boundary functions
extended to the domain, respectively.

We divide Q H into uniform mesh with equilateral triangles (7, 19,
61 nodes). We also divide Q s into uniform mesh with right isosceles
triangles (9,25,81 nodes). See Fig. 2. These triangulations satisfy



EXPLICIT MONOTONE ITERAnONS 249

(a) Hexagon (19 nodes) (b) Square (25 nodes)

FIG. 2. Uniform mesh (acute type): (a) hexagon (19 nodes); (b) square (25 nodes).

TABLE I

Number of Iterations

Problem

Problem I (25 nodes)

Problem 2 (19 nodes)

Problem 3 (25 nodes)

Iteration

(3.4)
(3.6)
(3.1 )
(3.5)

(3.4)

(3.4 )

TABLE II

Number of iterations

27
44
50
61

17

23

Numerical Results for Problem I with 25 Nodes at the Point (!, !)

k

o
1
2
3
4
5
6

10
20
26
27

Iteration (3.4)

0.00000
0.17408
0.50598
0.84236
1.1496
1.3881
1.5594
1.8146
1.8467
1.8468
1.8468

(Convergence)

Yi.k

10.000
8.3123
5.2665
3.1262
2.0374
1.4889
1.2131
0.94559
0.92348
0.92340
0.92340

Iteration (4.5)

Yi.k

20.000 0.00000
16.540 0.0028822
10.406 0.013327
6.1980 0.057920
4.0223 0.19730
2.9191 0.39946
2.3733 0.58428
1.8810 0.88626
1.8469 0.92332
1.8468 0.92340
1.8468 0.92340

(Convergence)
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Assumption 1. The numerical convergence criterion for the iteration is
employed, for example, as follows:

max IWik - Wik-d ~ 10-6

l~i~N' •
and

In Table I we show the numbers of iterations to achieve our criterion. In
Table II and Fig. 3, we present the monotone convergence results. In [6]
we showed that {Uh,Vh} converges uniformly to {u,v} as h-+O. Table III

20

15

(3.4)

(4.5)

10

-=::==-_----------- 1.8468

w.
~,

-=== 0.92340

o 5 10 15 20 25 27 k

FIG. 3. Monotone convergence for Problem 1 with 25 nodes at the point (!, !).
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TABLE III

Finite Element Solutions

(a) Problem 1

251

h Number of nodes

~/2 9
~/4 25

~/8 81

Exact (continuous)

(b) Problem 2

~j=Uh(!,t) C=Vh(t, t)

1.8778 0.93891

1.8468 0.92340

1.8282 0.91411

1.8182 0.90909

t 7

* 19i 61

Exact (continuous)

(c) Problem 3

0.27519
0.26948
0.26810

0.26763

1.1007
1.0779
1.0724

1.0705

Exact (continuous)

~/2
.J2/4
~/8

9

25

81

~i=Uh(t, t) C= Vh<t, tl

0.25388 1.0155
0.25136 1.0054
0.25038 1.0015

0.25000 1.0000

gives the finite element solutions. These results for Problems 2, 3 coincide
with those obtained in [6]. Our numerical examples verify the effectiveness
of the iterations.

All computations were performed on the MELCOM-COSMO 800 III com­
puter at Kyushu Institute of Technology.
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