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1. INTRODUCTION

We consider explicit monotone iterations of the finite element
approximations to the Dirichlet problem for the nonlinear elliptic
equations:

Au=b,u"v™, Av=b,u"v™ in £, 1)
u=g(x), v=g,(x) on I'=0Q. )

Here x=(x,..,X,), 2 is a polyhedral domain in the n-dimensional
Euclidean space R”, I'=0Q is the boundary of Q, 4 is the Laplace
operator, b,, b, are positive constants, n,, n, are positive integers, and the
given functions g,, g, are smooth and nonnegative. Systems of this type
arise in chemical reactions [1, 4]. In such cases, u, v represent the concen-
trations, so that u, v are required to be nonnegative. The uniqueness and
existence of the nonnegative solution for (1.1) is known [9, 10].

In a previous paper [6], we presented implicit iterations for solving a
system of nonlinear algebraic equations. From a computational viewpoint,
the disadvantage of such implicit iterations is that a set of linear equations
has to be solved at each stage. In the case of a very large scale problem, it
is not desirable to use implicit iterations.

The aim of this paper is to present explicit iterations which are the
generalization of [8]. These iterations provide upper and lower bounds for
the solution of the discrete problem. Moreover we give monotone con-
vergence proof. Use of explicit iterations simplifies the program coding
procedures and results in significant reduction in computational efforts.
Finally some numerical results are given.

241

0021-9045/85 $3.00

Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.



242 KAZUO ISHTHARA

For the finite element approximations to a single equation Au = bu’, we
refer to [7, 81].

2. FINITE ELEMENT APPROXIMATION

For given nonnegative functions g,, g,, we assume that
G,=max{g(x);xel'} >0, i=12.

From the maximum principle [5], the unique nonnegative solution {u, v}
of (1.1) satisfies

O0<u<@G,, 0<v<G,.

First, we triangulate €2 in such a way that Q=T,0T,u --- U T,, where

T,, 1<g<J, are nondegenerate closed n-simplices whose interiors are

pairwise disjoint. By P;,, 1 <i<N (or P;, N+ 1<i< N+ M), we denote
the vertices of the triangulation which belong to £ (or I). Set

h,=diameter of T, h=max{h,;1<g<J},

p,=supremum of the diameter of the inscribed sphere of T,.

We say that a family {7 "} of triangulations is regular if there exists a
positive constant ¢ independent of the triangulation such that

h,<cp, forall T,eT™"

For T,e 7%, let P, P{%,..., P\ be its vertices, and let A()(x), 0<j<n,
be the barycentric coordinates of a point x € T, with respect to P{?. Define

0, =max{cos(VA?, Vi), 0<i<j<n}, o =max{o,;1<qg<J}.

We say that a triangulation 7" is of acute type if ¢ <0. We note that in
case n=2, 7" is of acute type if and only if all the angles of the triangles of
J* are less than or equal to n/2 [2].

The barycentric subdivision B¢ of T, corresponding to P, which is the
vertex of T, with the barycentric coordinate 1{)(x) is given by

Bi= () {xe T, AP (x)= A9 (x)}.
j=1

Jj=

Then the lumped mass region #(P;) is defined as follows (see Fig. 1):
B(P,)=|) {B?; T,e " such that P, is a vertex of T,}.
q
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FiG. 1. Lumped mass region and nodal numbers i(j).

Let ¢,, 4, 1 <i< N+ M be the finite element basis such that

¢, is continuous on £ and linear on each 7,
¢1(P =1’ l= 'a éi(x)=1’ xeg(Pi))
) / 1<i, j<SN+ M.
=0, i#}j, =0, x¢RB(P),

If we seek the finite element lumped solution {u,, v,} for (1.1) in the form

N+M N
ggh)z Z gi(Pj)¢j’ l= la 23 u,= Z €j¢j+ g(lh)’
j=N+1 j=1

N
Uy = Z Cj¢j+ ggh),
j=1

then (&;,..., &n, (hseey () satisfies the following system of nonlinear
algebraic equations:

H{(& 15y Ens Cioens E)

N N+M

Zai,jéj+ Z ai,jgl,j‘*’blmié;"az:oy
1

i= j=N+1

Qi(él""’ éN’ Cl"--y CN)

2.1)

N N+M

= Z a;;(;+ Z a;; 8 ;+b,mN{r=0,
1

i= J=N+1
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for 1 <i<N. Here
..—j Z a¢ 6¢’d m,.=f 2 dx >0,
Q
I<iKN, 1<jEN+M, (2.2)

=81(P) 20, g,;=8(P)20, N+I<jSN+M. (23)

In the sequel, we make the following assumption.

ASSUMPTION 1.  The triangulation I is regular and of acute type.
g yp

3. EXPLICIT ITERATIONS
From the computational viewpoint, we present the following iteration

for solving (2.1):
Hi(Wi ks Whies Vikeres YNi)

Wik 1= Wix—
a;;+bym, yz%anl~l [wi,k’ wig™ (3.1)

y —y QWi sss Whies Vijeres Vi)
k+1 =7 Jik ™ s
a,i+bymwihi F ([ Vie, Vir]

for 1<i<N, k=0,1,2,... Here

wio=0,  yio=G,, 1<i<N, (3.2)

wip = max{wi(l),k9 Wiy ko Wikddr Wid; + 1) k> Wi(s,'),k} (3.3)
i(1), i2),..., {d;), id;+1),..,i(s;) are nodal numbers of the vertices
Pi2yses Piays Picav 1)r Pisy associated with P, (see Fig. 1) such that

Pi!l), ’ -
PP, 1<j<s, are sides of some n-simplices of 7" and

(1) <i, i(2) iy i(d) <0, i(d;+1)> ..., i(5,) >0,

a0 <0, 1<j<s,.

We may also present the following:
H (wl k+ 15 W,—_ Lk+1> wi,ka"-, wN,k, fl,kr--a yN,k)

’

Wiks1= Wi — = - —
' ’ a;;+ bym; y;:iFnl —1[Wik, Wﬁax] (3.4)

7 —5 QW ks 13 Wt 15 Vi 10 Vi Lk+ 15 Vikoos YNk
k+1= Vie — = 5 5 ’
a,;+bymwi Fu [ Digs Vird
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for 1<ig<N, k=0,1,2,... Here
Wio=0 )7i0=G2a I<igN,
W;T;cax-max{wz(l)uu Wi2nk + 150 Witdik + 15 Wigd,+ 1),k o x(s,)k}
Furthermore we may use the following two iterations:

H(tlk’ atNk, ik aZNk)

Likvrt1=tix—
all+bmzlk ~1[tzk»G] (35)
s - Qili ks UNger Zkerees ZNic)
Wk+1 = “ik ™ s
a;+bymtF, [zx, G,]
_ s Hternes Liciesns ka, o ENes Z1 ks ZNk)
petl o a +b t 1k —1[t1k9G ] ’
i _ _ (3.6)
5 -3 QilF ks 1oes Enies 1 2t 1o Zim Lot 1 Ziererss ZN k)
ikt 1= 2~ - = ,
a;;+bamitl ,  Foy_1[Zk, G2]

for 1<i<N, k=0,1,2,... Here

ti.0=ti,0=0’ Z,0=2;0=G, 1<i<N.

4. MoNOTONE CONVERGENCE RESULTS

We give the monotone convergence proof. Some lemmas are prepared.
LemMa 1. It holds that
(EF,[&]-& )= (F,[& 0=,
gngm=Emfm="F, [ EN(&E—&)+EMF,,_,[(, {1 -0)
Proof. 1In case s=0, the proof is immediate. When s> 1, we have
CFIEO-E =80+ 8710+ - + 80"+ =(F[E -0,
gy — i = {m(Em — Em) + &M — )
={"F,,_[& E1¢ -+ &"F,,_ [( {1 =0).

LEMMA 2 [2,6]. Under Assumption 1, a,

i LSISN, 1<j<SN+M, of
(2.2) satisfy

a;;>0,a,;<0,a,,=0,

iﬁp#i,p#z(r),1<r<s,-,1<z<N, 1<j<N+M,
N+M Si

Z ai,j= Z a,-‘,-(j)'l—a,;,»“—:o, 1<i<N.
j=1

j=1
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LeMMA 3 [6]. Under Assumption 1, there exists a unique nonnegative

solution (&,,.., Ly, (1, {n) of (2.1) satisfying 0<&, <G, 0<{,€G,,
I<i<N.

LEMMA 4. Under Assumption 1, the iteration (3.1) satisfies

Wig=0, 1,20, w0 Sw I1<i<N,k=01,2,..
Proof. By (3.2) we get w,, >0, y,,20, 1<i<N. Assume that
wie=0,  y,20, I<igN. (4.1)
Then, by (3.1), (3.3), (4.1), (2.2), (2.3), and Lemma 2, we obtain

(au+blm ylk n1~l[w1k’w ])wtk+l

N N+M

=“Z a; Wik — Z a;;81;+bim yEwyF, Wy, w wig ] —wit) =0,
j=1 j=N+1
Jj#Ei

(@i +b,mwi Fo [ Vi Yikd) Yiks1 20, I<ig<N.

Thus, by induction we obtain (4.1), k=0, 1, 2,.... On the other hand, from

Lemmas 1 and 2, it follows that

W, - “Z}';l A Wignu +010m; YW Fu o [wie, w1 —wi}) < wmex
et a,;+bym, yziFnl— Wik, wlhax il

for 1<i<N, k=0, 1, 2,.... Hence the proof is complete.

We are now in a position to prove the following theorem.

THEOREM 1. Under Assumption 1, the iteration (3.1) satisfies

0w, <Gy, 0<y,, <G,, 1<i<N,k=0,1,2,.,

WoSWi i€ " SWi e SWiy 1 €00,

YioZYiiZ U ZVikZVikr1 2 1<igN,
lim w;, =¢, lim y,,={, 1<i<N.
k— o k- o

Proof. From Lemma 4, it follows that

w20,  y,20, 1<i<SNk=0,1,2,... (4.2)

From (3.2) it is clear that w,, <G, 1 <i< N. Assume that

Wi <Gy, I<igN. (4.3)
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Combining (4.3) and Lemma 4, we have
Wik 1 SMAX{W 0130 Wiay s Wisak } SO 1<igN.

Hence by induction (4.3) holds for k=0, 1, 2,.... By (4.2), (3.1) with k=0,
(3.2), and Lemma 2, we have

w1 Z20=w, Yiy <G2= Yy, I<igN
Assume that
WioSWi 1< SWy, YioZ Vi1 Z " 2 Vik 1<i<N. (44)

From (3.1) with k and k+ 1, (4.4), Lemmas 1, 2, and 4, we get

(@ i+bim Y3 F, (I, Wi DWWk o1 —Wik)

= _Z lJ(wjk 1k~1)

¥
+bomwWh o i [Vik—15 YikdVik—1— Vik)
+bim; Y5 Wik— Wi W Fn oo [Wie— 1 wies 1]
= Fo 1 [Wik—15 Wi 1) 20,

(@i +bomWi Froy 1 [Viks Vi DYVikr1— Vi) <0, I<isN
Thus (44) holds for k=0,1,2,., and the limits E=lim, , , wiy,
{i=lim, _  y;r, 1IN, exist and satisfy
HAE s Ens (i ) =0, Q& uy Ens Ciaes () =0, 1IN,

from (3.1). Hence an application of Lemma 3 leads to &,=¢,, {;=¢(,
1 <i< N. Therefore this completes the proof of Theorem 1.
By the same arguments, we obtain the following results.

THEOREM 2. Under Assumption 1, (3.4), (3.5), (3.6) converge mono-
tonically, ie.,

Wi 28 Vel ti 78 2 N5
E 780 Zi s I<igN

Remark 1. We can construct the following iteration:

_ QW 1 herers Wiiser ik 1o Pie tet 15 Pideres INk)

ii,k+l — Vik ~ ~ ~max ’
a,;+bymWi F, [ P51
4.5)
- _ HiWy kg 1509 Wic 1k 15 Wisres Whges Pries 100 INks1)
Wik+1=Wix—

~ ~ ~ 3
a,,+bm Viks1Fn T
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for 1<i<N,k=0,1,2,.. Here ,,=0, w,o=G,, 1<i<N,
)7;3{“ = max{ y~i(1),k+ s )7i(2),k+ 1500 J7i(di),k+ 15 }7i(d,+ 1)k o yi(s,v),k}'
Then (4.5) converges monotonically, ie.,
Vik 7L Wik NCiy I<igN.
Hence the above result and Theorem 2 lead to
Wi &< Wiy, P SG€ FVies 1<i<Nk=0,1,2,...

This provides the upper and lower bounds for the solution of (2.1).

5. NUMERICAL EXAMPLES

We show here numerical results of the explicit iterations. Let

Qy={(x;, x;)eR% \/3/4<\/§x1+x2<5\/§/4,
0<x,</3/2, =3./3/4<x,— /3%, < /3/4},

'QS:: {(xl, x2)€R2;0<x1<1, O<x2<1}.
PROBLEM 1.
Au=2u’v, Av=u* in Qg,
u=2/(x;+x,+0.1), v=1(x;+x,+01) onl3=0Q2;.
PROBLEM 2.
Au=3uv, Av=12uv inQ,,
u=1/(x;+x,+1)%,  v=4/(x;+x,+1)> onl,=02,.
PROBLEM 3.
Au=3uv, Av=12uv in Qg,
u=1/(x, +x,+1)? v=4/(x;+x,+1)*> onIs=0Q;.

The exact solutions for Problems 1, 2,3 are the boundary functions
extended to the domain, respectively.

We divide Q, into uniform mesh with equilateral triangles (7, 19,
61 nodes). We also divide Qg into uniform mesh with right isosceles
triangles (9, 25,81 nodes). See Fig 2. These triangulations satisfy
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(a) Hexagon (19 nodes) (b) Square (25 nodes)

Fig. 2. Uniform mesh (acute type): (a) hexagon (19 nodes); (b) square (25 nodes).

TABLE I

Number of Iterations

Problem Iteration Number of iterations
(3.4) 27
(3.6) 44
Problem 1 (25 nodes) (3.1) 50
(3.5) 61
Problem 2 (19 nodes) (34) 17
Problem 3 (25 nodes) (3.4) 23
TABLE 1I

Numerical Results for Problem 1 with 25 Nodes at the Point (4, 1)

Iteration (3.4) Iteration (4.5)
k Wik }_li,k wik yi,k
0 0.00000 10.000 20.000 0.00000
1 0.17408 8.3123 16.540 0.0028822
2 0.50598 5.2665 10.406 0.013327
3 0.84236 3.1262 6.1980 0.057920
4 1.1496 2.0374 4.0223 0.19730
5 1.3881 1.4889 29191 0.39946
6 1.5594 1.2131 2.3733 0.58428
10 1.8146 0.94559 1.8810 0.88626
20 1.8467 0.92348 1.8469 0.92332
26 1.8468 0.92340 1.8468 0.92340
27 1.8468 0.92340 1.8468 0.92340

{Convergence) (Convergence)
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Assumption 1. The numerical convergence criterion for the iteration is
employed, for example, as follows:

max |w; —w;,_;|<107° and max |ye— Y-l <107°.

1<isN 1<isN

In Table I we show the numbers of iterations to achieve our criterion. In
Table Il and Fig. 3, we present the monotone convergence results. In [6]
we showed that {u,,v,} converges uniformly to {u, v} as h—> 0. Table III

(3.4)
(4.5)
1.8468
0.92340
A P X
20 25 27

FiG. 3. Monotone convergence for Problem 1 with 25 nodes at the point (3, 4).
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TABLE I1I
Finite Element Solutions

(a) Problem 1

h Number of nodes Ei=u(d, $) (=043, %)
J22 9 1.8778 0.93891
J2/4 25 1.8468 0.92340
J28 81 1.8282 0.91411
Exact (continuous) 1.8182 0.90909
(b) Problem 2

Ei=ulh /3/4) =043 /3/4)

1 7 0.27519 1.1007

Py 19 0.26948 1.0779

} 61 0.26810 1.0724

Exact (continuous) 026763 1.0705

(c) Problem 3
Ci=u(d 9) {i=v4(33)

NEY 9 0.25388 1.0155

J2/4 25 0.25136 1.0054

V28 81 0.25038 10015
Exact (continuous) 0.25000 1.0000

gives the finite element solutions. These results for Problems 2, 3 coincide
with those obtained in [6]. Our numerical examples verify the effectiveness
of the iterations.

All computations were performed on the MeLcoM-Cosmo 800 I com-
puter at Kyushu Institute of Technology.
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